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1 Billingsley’s Lemma, Local Dimension, and Frostman’s
Lemma

1.1 Vitali’s lemma

Last time we covered the mass distribution principle:

Theorem 1.1 (Mass distribution principle). Let (X, ρ) be a metric space with µ ∈ P (X)
and A ∈ BX . Assume that

1. For all x ∈ A there is a δx > 0 such that µ(B(x, δ)) ≤ Cδα.

2. µ(A) > 0.

Then mα(A) > 0, so dimH(A) ≥ α.

We want to discuss converses to this. We need the following “combinatorial” fact.

Lemma 1.1 (Vitali). Let (X, ρ) be a compact metric space, and let B = {B(xi, ri) : i ∈ I}
be a family of balls.

1. If I is finite, then there exist i1, . . . , in ∈ I such that B(xij , rij ) ∩B(xi` , ri`) = ∅ for
all j 6= `.

2. If I is general with supi ri < ∞, then there is a sequence i1, i2, . . . ∈ I such that the
B(xij , rij ) are disjoint and

⋃
B ⊆

⋃
j B(xij , 3.1rij ).

Remark 1.1. The first case does not need the compactness. For the second case, we can
substitute compactness with other assumptions.
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1.2 Billingsley’s lemma

Lemma 1.2 (Billingsley). Let (X, ρ) be a compact metric space, and let A ∈ BX . Suppose
µ ∈ P (X) is such that for all x ∈ A, there exists a sequence of radii δx1 > δx2 > · · · → 0 such
that µ(B(x, δxi )) ≥ C(δci )

α for all i, where C > 0. Then mα(A) <∞, and dim(A) ≤ α.

Proof. Let δ > 0, and let Bδ = {B(x, r) : x ∈ A,µ(B(x, r)) ≥ Crα, r ≤ δ}. For every
such δ, A ⊆

⋃
Bδ. Vitali’s lemma provides disjoint B(x1, r1), B(x2, r2), · · · ∈ Bδ such that

A ⊆
⋃
iB(xi, 4ri). So

Hα8δ(A) ⊆
∑
i

(4ri)
α = 4α

∑
i

rαi ≤
4α

C

∑
i

µ(B(xi, ri)) ≤
4α

C
.

So mα(A) ≤ 4α/C.

1.3 Local dimension

Definition 1.1. Let µ ∈ P (X). The local dimension of µ at x is

dim(µ, x) := lim inf
r→0

log(µ(B(x, r)))

log(r)
.

The upper local dimension of µ at x is

dim(µ) = inf{dim(A) : A ∈ BX , µ(X \A) = 0},

and the lower local dimension of µ at x is

dim(µ) = inf{dim(A) : A ∈ BX , µ(A) > 0}.

We want to get out the biggest (i.e. supremum) exponent α we can choose so that
µ(B(x, δ)) ≤ Cδα for arbitrarily small balls.

Proposition 1.1. Upper and lower local dimension have the following properties:

1. dim(µ) = ess supx∼µ dim(µ, x).

2. dim(µ) = ess infx∼µ dim(µ, x),

where x ∼ µ means that x is a random quantity drawn using the distribution µ.

Proof. For each of these, ≤ follows from Billingsley’s lemma, and ≥ follows from the mass
distribution principle.
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1.4 Frostman’s lemma and weighted Hausdorff content

Lemma 1.3 (Frostman). Let (X, ρ) be a compact metric space. If mα(X) > 0, then there
is a µ ∈ P (X) and a C <∞ such that µ(B(x, r)) ≤ Crα for all x, r.

Remark 1.2. We cannot just always take µ to be a normalized mα because mα(X) may
be infinite.

We will prove this after introducing weighted Hausdorff measure.

Definition 1.2. Let A ⊆ X and δ > 0. The weighted Hausdorff content is

WHαδ (A) := inf

{∑
i

cI(diam(Ei))
α : diam(Ei) ≤ δ,1A ≤

∑
i

ci1Ei , ci ∈ (0,∞)

}
≤ Hαδ (A).

The weighted Hausdorff measure is

wmα(A) := lim
δ↓0
WHαδ (A).

Remark 1.3. From the definition, we see that wmα ≤ mα.

Remark 1.4. The involved covering is not always just a covering of A. This is called a
fractional covering of A.

Remark 1.5. Hausdorff measure is solving an optimization problem. Weighted Hasudorff
measure is solving the relaxed1 optimization problem.

Proposition 1.2. Let A be compact. If Hαδ (A) > 0, then WHαδ/5(A) > 0.

Proof. Fix a fractional covering 1A ≤
∑

I ci1Bi with diam(Bi) ≤ 5. By compactness,

for all t < 1, there exists some M such that t1A ≤
∑M

i=1 ci1Bi . We want to show that

Hα5δ({
∑M

i=1 ci1 − Bi > t}) ≤ O(1/t)
∑M

i=1 a(diam(Bi))
α. By perturbing, assume that the

ci, t ∈ Q+. Now clear denominators; assume c1, . . . , cn, t ∈ N. By allowing duplicate balls
Bi, we may assume that ci = 1 for all i.

We now want to show that Hα5δ({
∑m

i=1 1Bi > t}) ≤ O(1)
t

∑
i(diam(Bi))

α. Let B =

{B1, . . . , Bm}. Vitali’s lemma gives disjoint B̃1, . . . , B̃k ∈ B such that
⋃k
j=1 B̃

(3)
j ⊇

⋃
B.

This means that B̃ = B \ {B̃1, . . . , B̃k} still covers A at least t− 1 times.
Now induct on t. For t = 1/2, we are done. For t ∈ N + 1/2, assume we already know

the statement for t− 1. We get

(t− 1)Hα5δ({
∑

B̃ > t− 1︸ ︷︷ ︸
A

}) ≤ O(1)
∑
B∈B

(diam(B))α.

1Relaxation is a notion from computer science.
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Since
⋃k
j=1 B̃

(3)
j ⊇

⋃
B ⊇ A, we also have

Hα5δ(A) ≤ 3α
k∑
j=1

(diam(B̃j))
α.

Now combine these two inequalities.

We can now prove Frostman’s lemma:

Proof. There exists a δ > 0 such that WHαδ (X) > 0. Define for f ∈ C(X):

p(f) := inf

{∑
i

ci(diam(Bi))
α : f ≤

∑
i

ci1Bi ,diam(Bi) ≤ δ

}
.

Check that p(tf) = tp(f) for all t > 0, that p(f+g) ≤ p(f)+p(g), and that p(1X) > 0. By
the Hahn-Banach theorem, we get a linear functional on the whole space. Now by Riesz
representation, this is a measure. Take the total variation.
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