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1 Billingsley’s Lemma, Local Dimension, and Frostman’s
Lemma

1.1 Vitali’s lemma
Last time we covered the mass distribution principle:

Theorem 1.1 (Mass distribution principle). Let (X, p) be a metric space with p € P(X)
and A € Bx. Assume that

1. For all x € A there is a d; > 0 such that u(B(x,d)) < C6*.
2. u(A) > 0.
Then mq(A) > 0, so dimpg(A4) > a.
We want to discuss converses to this. We need the following “combinatorial” fact.

Lemma 1.1 (Vitali). Let (X, p) be a compact metric space, and let B = {B(x;,r;) 11 € I}
be a family of balls.

1. If I is finite, then there exist i1, ..., iy € I such that B(x;,r;;) N B(w;,,15,) = @ for
all j # 0.

2. If I is general with sup,; r; < oo, then there is a sequence i1,142,... € I such that the
B(xi;,1i;) are disjoint and |JB C Uj B(w;,3.1ry;).

Remark 1.1. The first case does not need the compactness. For the second case, we can
substitute compactness with other assumptions.



1.2 Billingsley’s lemma

Lemma 1.2 (Billingsley). Let (X, p) be a compact metric space, and let A € Bx. Suppose
w € P(X) is such that for all x € A, there exists a sequence of radii 67 > 65 > --- — 0 such
that p(B(x,0F)) > C(65) for all i, where C' > 0. Then mq(A) < 0o, and dim(A) < a.

Proof. Let 6 > 0, and let Bs = {B(z,r) : * € A, u(B(z,r)) > Cr* r < 6}. For every
such §, A C |JBs. Vitali’s lemma provides disjoint B(z1,71), B(z2,r2),- - € Bs such that
A CJ, B(xs,4r;). So

4% 4o
Hgs(A) € ;(4%’)(1 = 4" Zi:ﬁq ol zi:H(B(wi,Ti)) <&
So mq(A) <4%/C. O

1.3 Local dimension

Definition 1.1. Let 4 € P(X). The local dimension of i at z is

) g BB )
dim(p, z) =1 T_>0f Tog(r) .

The upper local dimension of i at x is
dim(p) = inf{dim(A) : A € By, u(X \ A) = 0},
and the lower local dimension of y at z is
dim(p) = inf{dim(A) : A € Bx, u(A) > 0}.

We want to get out the biggest (i.e. supremum) exponent « we can choose so that
u(B(x,0)) < C6* for arbitrarily small balls.

Proposition 1.1. Upper and lower local dimension have the following properties:
1. dim(p) = ess supy,..,, dim(u, ).
2. dim(u) = ess infy,, dim(u, z),

where x ~ p means that x is a random quantity drawn using the distribution .

Proof. For each of these, < follows from Billingsley’s lemma, and > follows from the mass
distribution principle. ]



1.4 Frostman’s lemma and weighted Hausdorff content

Lemma 1.3 (Frostman). Let (X, p) be a compact metric space. If mqy(X) > 0, then there
isap € P(X) and a C < oo such that u(B(x,r)) < Cr® for all x,r.

Remark 1.2. We cannot just always take p to be a normalized m, because m,(X) may
be infinite.

We will prove this after introducing weighted Hausdorff measure.

Definition 1.2. Let A C X and 6 > 0. The weighted Hausdorff content is

WHS(A) ;= inf {Z cr(diam(FE;))® : diam(FE;) < 6,14 < Zci]lEm ¢i € (0, oo)} < H§(A).

(2

The weighted Hausdorff measure is

wmeg(A) = 151%1 WHS (A).

Remark 1.3. From the definition, we see that wmg, < my.

Remark 1.4. The involved covering is not always just a covering of A. This is called a
fractional covering of A.

Remark 1.5. Hausdorff measure is solving an optimization problem. Weighted Hasudorft
measure is solving the relaxed' optimization problem.

Proposition 1.2. Let A be compact. If H§(A) > 0, then WH§/5(A) > 0.

Proof. Fix a fractional covering 14 < ) ;¢;1p, with diam(B;) < 5. By compactness,
for all t < 1, there exists some M such that t14 < Zf\il cilp,. We want to show that

gé({Zi]\il ¢l —B; >t}) < O(1/t) Zf\il a(diam(B;))“. By perturbing, assume that the
¢i,t € Q4. Now clear denominators; assume cq,...,c,,t € N. By allowing duplicate balls
B;, we may assume that ¢; = 1 for all 4.

We now want to show that HZ;({d 7", 1p, > t}) < @Zi(diam(&))a. Let B =
{Bi1,...,By,}. Vitali’s lemma gives disjoint By,...,B) € B such that U;?:l BE](.g) o UB.
This means that B =B\ {Bi,..., By} still covers A at least t — 1 times.

Now induct on t. For ¢t = 1/2, we are done. For t € N+ 1/2, assume we already know
the statement for t — 1. We get

(t=DHG{D B>t-1}) <0(1) ) (diam(B))*.
N—_———
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'Relaxation is a notion from computer science.



Since U B ) > UB 2 A, we also have

k
Z (diam( B

Now combine these two inequalities. ]
We can now prove Frostman’s lemma:

Proof. There exists a 6 > 0 such that WH§ (X) > 0. Define for f € C'(X):

p(f) = inf {Zc@(dlam( f < Zcz]lB ,diam(B;) < 5} :

i

Check that p(tf) = tp(f) for all t > 0, that p(f+g) < p(f)+p(g), and that p(1x) > 0. By
the Hahn-Banach theorem, we get a linear functional on the whole space. Now by Riesz
representation, this is a measure. Take the total variation. O
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